Finding local community structure in networks.

نویسنده

  • Aaron Clauset
چکیده

Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(k2d) for general graphs when d is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time consuming, the running time is linear, O(k). We show that on computer-generated graphs the average behavior of this technique approximates that of algorithms that require global knowledge. As an application, we use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

تشخیص اجتماعات ترکیبی در شبکه‌های اجتماعی

One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...

متن کامل

An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks

The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...

متن کامل

An Efficient Algorithm for Community Detection in Complex Networks

Community structure detection in complex networks attracts considerable attention in recent years. In this paper we propose an algorithm to detect community structures in very large networks. Basing on the local community detection, this algorithm is able to detect global community structures. We found that the local maximal degree nodes locate dispersedly in networks and can be considered as k...

متن کامل

Local Betweenness for Finding Communities in Networks

ABSTRACT The betweenness centrality measure has been widely used for detecting community structure in networks, in particular in the “GN” algorithm due to Girvan and Newman. This suffers from low speed because the betweenness measure is computed from the entire network, and it has been largely supplanted by faster algorithms that can detect community structure using more local methods in place ...

متن کامل

A Case for Open Network Health Systems: Systems as Networks in Public Mental Health

Increases in incidents involving so-called confused persons have brought attention to the potential costs of recent changes to public mental health (PMH) services in the Netherlands. Decentralized under the (Community) Participation Act (2014), local governments must find resources to compensate for reduced central funding to such services or “innovate.” But innovation, even when pressure for c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005